### 2006 Undersea HSI Symposium

# Design Directions for Support of Submarine CO Decision Making



Cynthia O. Dominguez, William G. Long, Thomas E. Miller, Sterling L. Wiggins

Klein Associates
A Division of Applied Research Associates, Inc.



### Two Project Goals

# 1. Understand the decision requirements of skilled COs

Uncovering the cognitive challenges that systems need to support

# 2. Develop recommendations for the design of technologies to support CO decision making

Developing a cognitive case for technology recommendations

#### Research Process: Data Collection

#### Literature Review

- SA displays/Large screen displays
- Previous SubmarinerCognitive Task Analysis

# • 19 CTA Interviews with COs

At Norfolk, Groton, & Pearl Harbor

#### Direct Observations:

- NSS Attack Center
- USS Newport News (SCC)
- USS Albuquerque (surface)
- USS Virginia (tour)



### Multiple Converging Sources



### Design Directions Overview

#### **Current Picture**

- Vital Signs Display
- Integrated Vertical Slice
- Simplified Contact Management

#### **Future Picture**

- Active, Future-Oriented Support
- Spotting Leverage Points
- "What-If" Planning Support

### **Current Picture Design Directions**

### 1. Integrated Vital Signs Display

- Vital cues for understanding & monitoring are dispersed across displays and locations
  - Lack of interoperability forces CO to manually integrate the collective picture in his head
  - Need for redundancy and constant verbal/written information exchange is a byproduct
- Displays are designed for sitting watchstanders
  - COs have to look/move around the Control Room to get critical information

#### **Vital Signs Display**

A display that allows a CO to stand in Control and constantly get vital ownship information as well as vital information for contacts.

#### Ownship

course, speed, distance to next point, time constraint

#### Contact

CPA, estimated range, classification, contact ID, bearing rate, bearing, speed, course

| CRS<br>034 | SPD<br>5 | DST<br>1500 | TM<br>13:32 |
|------------|----------|-------------|-------------|
| V34        | Su       | ırface      | SPD<br>10   |
| BRT        | BF       | RG          | RNG         |
| R 1.0      | 09       | 2           | 16100       |
| CPA        | CE       | BRG         | CRS         |
| 4.5 nm     | 04       | .0          | 109         |

### Motivation for Design Direction #2

#### **Integrated Vertical Slice**

The manual gathering and integration of the vertical slice picture currently



#### **Integrated Vertical Slice**



### 3. Navigation and Contact Management

- Periods of high risk for Navigation/Contact Management:
  - Littoral operations
  - Getting underway
  - Preparing to surface or come to PD (temporarily blind)
    - Especially tough in arctic conditions and in high-traffic areas
  - Coming into port, especially if unfamiliar
  - Surface transit, especially at night
  - Transiting highly constrained waterways
    - Shallow, lots of traffic, i.e., Straits of Hormuz
- Strategies COs use to deal with high risk:
  - Repeated practice drills
  - Plan extensively for each risky phase
  - Leave flex time
  - Have radar ready to go immediately when surfacing

#### **Simplified Contact Management**

Display allows operators to triage the contact picture in high density environments by highlighting priority contacts, while monitoring all contacts and tripwires.

- Easily ungroup contacts into individual contacts and regroup them
- The operator will be able to:
  - Group contacts and label boundary cases:
  - Left most, right most, closest
  - Label primary and secondary contacts
- Drill down on single contact to get additional information
  - Classification, course, speed, range, range rate, bearing rate



### Future-Oriented Design Directions

### 4. Active, Future-Oriented Support

#### **CO Characteristics**

- COs are different than watchstanders
  - CO lives in the future, sets tripwires, determines track intent, sits "above the fray"

#### **Technology Challenges**

- CO can only access passive, repeater displays
  - Displays are designed for area specialists
    - Present and immediate past
    - Not well suited for big picture integration
- Displays cannot be actively engaged for big picture development
- Little support for viewing, monitoring, and sharing the big picture
  - Much must be maintained in his head

#### **Active, Future-Oriented Support**

#### **Display Features**

- Different timescales and scenarios
- Examine different parts of the picture
  - Drill down requirements are different
- Track history
  - How is track history used now?
  - E.g., tracking sporadic contacts over several days or recon
  - E.g., mapping traffic/finding quiet spots
- Different data projection and playback
  - E.g., satellite weather map cycle

### 5. Uncertainty

#### Many CO's cognitive challenges reflect uncertainty

- Submarine systems and missions present uncertainty, but don't help the CO to manage it
  - To shoot or not to shoot? (Is it a biologic?)
  - Have you been detected?
  - Is the enemy within range?
  - Is the FCS telling the truth?
- Need confidence that raw and processed (derived) data are well correlated
- The Goal Pyramid (Safety, Stealth, Mission) is fraught with gray areas and tradeoffs: are we safe and stealthy enough to proceed with the mission?
  - "Every day the CO struggled with meeting the conditions he received from his boss to go in closer. A Sub Commander has discretion on this, can decide how much risk they are willing to take based on comfort level."

### Design Direction #5: Managing Uncertainty

#### **Spotting Leverage Points**

 "How does making a maneuver affect the target solution—does maneuver X increase or decrease the blob of uncertainty around the contact?"

Display shows how uncertainty is increased or decreased with

each maneuver

 "Cloud of Uncertainty" useful for non-target contact management as well

 Overlay actual data with derived



### 6. Planning for Options

#### **Planning for Options**

- "Want to give yourself as many options as possible when you surface so that you can flex if surface situation isn't what you thought it was"
- "[I'm] thinking about options all along"
  - talking about surfacing in polar ice that was too thin to walk on and too thick to break through safely
- "I assembled a war council of department heads so I could hear what the impact of various options would be from their perspectives"
  - deciding how to get to intercept point for contact of interest in high-traffic area

#### "What-If" Planning Support

Objective: Support COs as they huddle with department heads to "What-If" the situation and during pre-mission planning

- Develop planning display that supports option development
- Permits drawing, projection into future, visualizing how situation could develop based on department heads' input
- Include timeline development tool to help COs build "flex time" into a plan
  - Explicitly show Moving Haven constraints
- Supports building of common ground, sharing of expertise, departure from routine process execution

### Summary

- Reported on development of six preliminary design directions based on:
  - Literature Review
  - CTA Interviews
  - At-Sea Observations

#### **Current Picture**

- Vital Signs Display
- Integrated Vertical Slice
- Simplified Contact Management

#### **Future Picture**

- Active, Future-Oriented Support
- Spotting Leverage Points
- "What-If" Planning Support

### **Next Steps**

- Beginning follow-on work to:
  - Identify process threads for priority study
    - Navigation and Contact Avoidance
    - Mission Planning
    - Mission risk assessment and execution
  - Establish cognitive metrics
  - Review existing and developmental technologies

### Questions?

## Cindy Dominguez, Bill Long, Tom Miller, Sterling Wiggins

#### **Klein Associates**

A Division of Applied Research Associates, Inc.
1750 Commerce Center Blvd. N.
Fairborn, OH 45324
937.873.8166
Cindy, Bill, Tom, or Sterling@decisionmaking.com
www.decisionmaking.com



### Research Process: Decision-Centered Design

#### **Background research**

literature review, background reading, review of previous NDM datasets

#### NDM methods

cognitive task analysis, knowledge audit, direct observation, cognitive assessment

#### Consolidation

Decision Requirements Table, thematic analysis



### Summary: CO Cognitive Challenges

- CO's view is forward looking, predictive
  - COs are trained to operate at the strategic control level: global context, wide event horizon, looking toward the future
  - But the available information pulls a CO down "into the weeds"
- Deployed operations
  - Constant trade-offs among safety, stealth, and mission
- Uncertainty and technology
  - Understanding own location and contact location/intent
- Keeping people proficient, motivated, and performing well
  - In the short term and the long term